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Abstract—This paper proposes a method for interactive surface
recognition and surface categorization by a humanoid robot using
a vibrotactile sensory modality. The robot was equipped with an
artificial fingernail that had a built-in three-axis accelerometer.
The robot interacted with 20 different surfaces by performing
five different exploratory scratching behaviors on them. Surface
recognition models were learned by coupling frequency-domain
analysis of the vibrations detected by the accelerometer with
machine learning algorithms, i.e., support vector machine (SVM)
and k-nearest neighbor (k-NN). The results show that by applying
several different scratching behaviors on a test surface, the robot
can recognize surfaces better than with any single behavior alone.
The robot was also able to estimate a measure of similarity
between any two surfaces, which was used to construct a
grounded hierarchical surface categorization.

Index Terms—Behavior-Based Systems, Force and Tactile Sens-
ing, Learning and Adaptive Systems, Recognition.

I. I NTRODUCTION

In humans, the sense of touch is fundamental for both
detecting and learning the properties of everyday objects.For
example, one only needs to slide his index finger across a
novel object in order to recognize its texture. Not surprisingly,
there has been a growing interest in developing sensors and
algorithms that would enable a robot to use and interpret tactile
feedback while manipulating objects [1].

Psychologists and neuroscientists have discovered two dif-
ferent sensory modalities that are used to encode surface
properties: atactile sensory modality for coarse surfaces and
a vibrotactile sensory modality for fine surfaces [2]. The
former involves specialized cortical neurons that detect spatial
variations through slowly adapting SA1 mechanoreceptors in
the skin [2]. The vibrotactile sensory modality, on the other
hand, is facilitated by cutaneous vibrations detected via the
Pacinian corpuscles mechanoreceptors [2], [3].

Other research has shown that humans explore the tactile
properties of objects through the use of a number of behaviors,
which are commonly referred to asexploratory procedures
[4] or exploratory behaviors[5]. For example, scratching an
object can inform us of its roughness, while lifting it can
inform us of its weight. Research in developmental psychology
has repeatedly shown that exploratory behaviors coupled with
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tactile feedback are fundamental for infants’ object perception
[6], [7].

Inspired by these findings from psychology, this paper pro-
poses the use of an artificial fingernail with a built-in three-axis
accelerometer sensor for vibrotactile perception of common
household surfaces. The accelerometer sensor can measure
vibrations in the finger as the robot scratches different sur-
faces. Following research from developmental psychology,our
humanoid robot was programmed with exploratory scratching
behaviors, which were used to recognize surfaces and to form
a hierarchical surface categorization. To solve these tasks,
frequency-domain analysis was applied on the accelerometer
measurements in order to extract spectrotemporal features
from each interaction. The Support Vector Machine and the
k-Nearest Neighbors learning algorithms were used to learna
surface recognition model based on these features. Using the
learned models, the robot was able to estimate the similarity
between any two surfaces and to learn a hierarchical surface
categorization grounded in its own experience with them.

Twenty different surfaces, which were made of various ma-
terials, were used in the experiments. The results show thatthe
robot recognized surfaces with high degree of accuracy. The
results also show that the use of multiple exploratory behaviors
can be crucial for achieving good recognition performance.

II. RELATED WORK

Findings in psychology have shown that the tactile sensory
modality is necessary to capture many object properties (e.g.,
roughness, texture, etc.) [8], [9]. More specifically, psychol-
ogists and neuroscientists have demonstrated that certainre-
ceptors in the skin are capable of detecting minute vibrations
as the finger slides across a surface, thus enabling discrimina-
tion between fine textures [2], [3]. According to Lederman
and Klatzky [4], tactile object exploration is facilitatedby
exploratory procedures. For example, to detect the roughness
of a surface, a person might slide his finger across it; to
detect its temperature, a person might touch it, etc. [10].
Studies have also shown that tactile exploratory behaviorsare
commonly used by infants when exploring a novel object [6].
For example, Stack and Tsonis [7] have reported that, in the
absence of visual cues, 7-month-old infants use more efficient
tactile exploratory strategies and can perform tactile surface
recognition to some extent.

The importance of the sense of touch for biological or-
ganisms has lead to an increased interest in tactile sensors
and their applications in robotics. For example, the goal of
the ROBOSKIN project, which was recently funded by the
European Commission, is to develop novel touch sensors for



an artificial skin that can cover large patches of the robot’s
body [11], [12]. The robotic skin is designed with flexible
and modular components that can be easily reconfigured to
the body morphology of a new robot. An early prototype of
the skin has already been installed on the iCub robot. Another
goal of the project is to use the skin sensor during social
learning tasks, in which a human provides corrective feedback
by touching the robot’s hand to indicate a desired movement
direction [13], [14].

Other research has focused on developing tactile-sensing
technologies for robotic fingers [15], [16], [17], [18], [19],
[20], [21], [22]. For example, Howe and Cutkosky [16] have
developed a robotic finger with an artificial rubber skin,
equipped with a piezoelectric polymer transducer that mea-
sures the changes in pressure induced as the sensor slides over
a surface. It was shown that minute features (as small as6.5
µm) could be detected on surfaces by sliding the sensor across
them. Computer vision methods for surface perception have
been explored as well [23].

Tanakaet al. [15] developed an artificial finger that uses
strain gauges and polyvinylidene fluoride (PVDF) foil to
generate tactile feedback when sliding across a surface. In
subsequent experiments, they demonstrated how their sensor
can detect roughness and temperature changes in the textures
of six different fabrics [24]. A similar sensor was developed
by Hosodaet al. [17]. By applying two different exploratory
behaviors –pushingandrubbing– their robot was able to dis-
tinguish between five different materials. A robotic finger with
randomly distributed strain gauges and PVDF films was also
proposed by Jamali and Sammut [22]. In their experiments,
a Naive Bayes classifier coupled with the Fourier coefficients
of the sensor’s output was used to recognize eight different
surface textures.

Three-axis force sensors have also been used for tactile
perception. For example, Beccaiet al. [25] used a 3-axis
microelectromechanical-system (MEMS) sensor to perform
slip detection. A similar sensor was also used by de Boissieu
et al. [26] to capture the high-frequency vibrations that occur
when rubbing a surface. In that study, the force sensor was
mounted on a plotter printer and was able to distinguish
between ten different paper surfaces with reasonable accuracy
(approximately 61%).

In another line of research, inexpensive accelerometers have
been proposed by Romanoet al. [27], [28] for the purposes
of recording and reproducing tactile sensations. Howe and
Cutkosky [29] have also developed a sensor that can detect
tactile vibrations using a three-axis accelerometer, providing
feedback that was useful for detecting if an object has moved
after being grasped (i.e., slip detection). They estimatedthat
the sensor’s output was most dependent on the sliding speed,
somewhat dependent on the surface roughness, and least
dependent on the applied normal force [29].

The sensor presented in this paper uses a similar three-
axis accelerometer to capture vibrotactile feedback and was
previously introduced by Sukhoyet al. [30]. In contrast with
previous work (including [30]), the humanoid robot described
here performed bothsurface recognitionand surface catego-
rization. For the first task, the robot was evaluated on how

Fig. 1. Humanoid robot used in the experiments, which is shown here
performing one of five scratching behaviors on a test surface.

well it could recognize the identity of a particular surface,
given vibrotactile sensory feedback. For the second task –
surface categorization – the robot was tasked with 1) grouping
surfaces into category types based on its sensorimotor experi-
ence with them and 2) recognizing the category memberships
of novel surfaces. To solve these problems, the robot used
five exploratory scratching behaviors, which it applied to the
different surfaces that it explored. Twenty different surfaces
were used in the experiments, which is one of the largest
number of surfaces reported in the robotics literature to date.
The next section describes the artificial fingernail sensor and
the experimental setup.

III. EXPERIMENTAL SETUP

A. Robot

The robot used in the experiments was an upper-torso
humanoid robot with two Barrett whole arm manipulators
(WAMs) for arms. Each WAM was equipped with the three-
finger Barrett hand (BH8-262). Fig. 1 shows the robot per-
forming an exploratory scratching behavior on one of the 20
surfaces used in the experiments.

B. Vibrotactile Sensor

The robot’s vibrotactile sensor consisted of an artificial fin-
gernail made of ABS plastic and the ADXL345 3-axis digital
accelerometer mounted on the EVAL-ADXL345Z evaluation
board. Both the accelerometer and the evaluation board were
manufactured by Analog Devices. The accelerometer’s output
rate was400.0 Hz using ten-bit resolution with a range of
±2 g for each axis. The ADXL-345 accelerometer uses an
on-board digital low-pass filter but does not have any analog
anti-aliasing filters.

The ABS plastic fingernail was designed with Computer-
aided design software and printed using a rapid prototyping
3-D printer. The sensor, along with its dimensions, is shownin
Fig. 2. The EVAL-ADXL345Z accelerometer evaluation board
was mounted on the fingernail, which, in turn, was attached to
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Fig. 2. The artificial fingernail with the three-axis accelerometer sensor. The
thickness of the fingernail was0.3175 cm (1/8th of an inch).

1) thick floor mat 2) thin blue mat 3) soft cloth 4) bumpy leather 5) thin floor mat

6) bulletin board 7) corduroy 8) leather (flat) 9) kitchen roll 10) table

11) bed sheet 12) back of 7) 13) back of 5) 14) sparkly cloth 15) cotton wool

16) plastic pattern 17) white paper 18) yellow paper 19) bubble wrap 20) wood

Fig. 3. Twenty surfaces scratched by the robot. 1) Thick floormat; 2) thin
blue mat; 3) soft cloth; 4) leather with bumps; 5) thin floor mat; 6) bulletin
board:; 7) corduroy; 8) leather (flat); 9) plastic kitchen roll; 10) table; 11) bed
sheet; 12) back of corduroy; 13) back of thin floor mat; 14) cloth with sparkles;
15) cotton wool (back of 8); 16) plastic pattern (back of 4); 17) paper, white;
18) paper, yellow; 19) bubble wrap; 20) wood. In addition, a21st “surface”
was added to the dataset as a control condition, which corresponded to the
robot scratching in mid air.

the middle finger (i.e., F3) of the robot’s left hand such thatits
tip protruded from the robot’s finger. The sensor was attached
to the finger with several layers of electrical tape, which was
sturdy enough to prevent it from sliding (see Fig. 4). When the
robot performed a scratching behavior, the vibrations of the
fingernail were captured by the attached accelerometer. The
accelerometer data were transferred to the PC over a universal
serial bus (USB) at 400 Hz using the Arduino Duemilanove
microcontroller. The sampling-frequency limitation was due
to the limited serial port bandwidth of the Arduino board that
was used to communicate with the accelerometer.

C. Surfaces

The robot performed exploratory scratching behaviors on
the 20 different surfaces shown in Fig. 3. The surfaces were
made of materials such as cloth, leather, wood, rubber, paper,
and plastic. Some of the surfaces were specifically chosen to
be similar to each other and, thus, were hard to distinguish,
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Fig. 4. Before and after images for two of the scratching trajectories
performed by the robot on theplastic kitchen roll(i.e., surface 9).

TABLE I
THE FIVE EXPLORATORY SCRATCHING BEHAVIORS

Behavior Sliding Direction Duration

lateral-fast left to right 3.9 sec
lateral-medium left to right 7.5 sec
lateral-slow left to right 14.7 sec
medial-fast back to front 4.6 sec
medial-medium back to front 7.9 sec

e.g., the two types of paper (i.e., surfaces 17 and 18) and the
two doormats (i.e., surfaces 1 and 5). Some of the surfaces
were simply the backsides of other surfaces, such as the red
leather (i.e., surface 8) and its backside, the cotton wool (i.e.,
surface 15). As a control condition, the robot also performed
the scratching behaviors when no surface was present (i.e.,
scratching in mid air), which was recorded as the21st surface
in the dataset. For the rest of the paper, we will useS, where
|S| = 21, to denote the set of surfaces that the robot interacted
with.

D. Exploratory Behaviors

The robot’s set of behaviors, i.e.,B, consists of five different
exploratory scratching actions. The first three behaviors are
lateral scratches (i.e., right to left) performed at three different
velocities: slow, medium, and fast. The other two behaviorsare
medialscratches (i.e., back to front) performed at two different
velocities: fast and medium. In other words, each of the five
behaviors is a variation of a prototypical scratching motion,
which is attained by varying the direction or the speed at which
it is executed. Fig. 4 shows before and after images for two
scratching behaviors. The behaviors and their durations are
listed in Table I.

The behaviors were encoded as trajectories using the low-
level Barrett WAM API (btclient), which uses a proportional-
integral-derivative (PID) controller. One lateral trajectory and
one medial trajectory were recorded, and their speeds were
varied to obtain all five exploratory behaviors. The default
velocity parameter for trajectory playback in the Barrett API
was used for the medium-velocity setting. The fast velocity
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was set by doubling this parameter, while the slow velocity
was set by halving it. For all scratching behaviors, the tip of
the robot’s finger slid across approximately 12 inches of the
surface. The behaviors were not designed to maintain constant
orientation of the finger relative to the surface as our method
does not rely on that. Instead, during the execution of each
trajectory an additional5 N-m torque was applied on joint 1
(shoulder joint) in the downward direction to ensure contact
with the surface at all times.

E. Data Collection

Each of the 5 behaviors inB, was performed 10 times by
the robot on each of the 21 surfaces inS, which resulted in
a total of 5 × 21 × 10 = 1050 behavioral interactions (or
trials). During theith trial, the robot recorded the currently
executed behaviorBi ∈ B, the current surfaceSi ∈ S, and
the current accelerometer readingsAi. The sensor readings
were represented asAi = [a1,a2, . . . ,ani ], whereni is the
number of readings recorded during triali, and eachaj ∈ R

3

denotes the measurements for each of the three accelerometer
axes.

To minimize transient noise effects due to wear and tear of
the fingernail, the surfaces were swapped throughout the data
collection processes. In other words, the surface was changed
after the robot scratched it once with all five exploratory
behaviors and not scratched again until the robot scratched
all other surfaces.1

IV. L EARNING METHODOLOGY

A. Feature Extraction

To recognize surfaces based on vibrotactile feedback, some
features were first extracted from the accelerometer data. The
first step in this process was to convert the accelerometer read-
ings Ai into a magnitude vectorMi = [m1,m2, . . . ,mni ],
where eachmj ∈ R captures the magnitude of the acceler-
ation vector at samplej, while ignoring the direction of the
acceleration. This was done using the L2 vector norm given
by

mj = |aj|2 =

√

(aj
x)2 + (aj

y)2 + (aj
z)2

The next step was designed to capture the high-frequency
components of the acceleration data. To do this, the temporal
sequenceMi was smoothed using a moving average filter with
a window of length 100 (i.e.,0.25 s, since the data were
recorded at 400 Hz), resulting in the smoothed magnitude
acceleration vector̃Mi. A magnitude-deviation vectorDi was
computed asDi = Mi − M̃i in order to capture vibrations
detected by the accelerometer.

Fig. 5 shows the raw accelerometer readingsAi over the
course of an interaction, and the resulting magnitude deviation
vectorDi. OnceDi was computed, its discrete Fourier trans-
form with 129 frequency bins was computed, thereby resulting
in a spectrogram, which denotes the intensities of different
frequencies over time. Fig. 5(c) shows the spectrogram of the

1A check was performed to verify that sensor wear and tear, if any, was
undetectable at the input feature level. If the sensor is changing over time, then
two consecutive trials with the same surface and the same behavior should
produce feedback signals that are more similar than the ones produced by two
trials that are temporally further apart. No such relationship was found.
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c) Spectrogram ofDi d) Histogram FeaturesXi

b) Magnitude deviation vectorDi computed fromAi

a) Raw 3-axis accelerometer readingsAi

Fig. 5. Visualization of the feature extraction process used by the robot to
recognize surfaces: a) the raw sensor readingsAi for each accelerometer axis
over the course of an interaction with a surface; b) the computed magnitude
deviation vectorDi; c) the discrete Fourier transform ofDi with frequency
components in the range of 4-200 Hz; and d) 2-D spectrotemporalhistogram
featuresXi computed from the spectrogram. In this particular example, the
plastic kitchen roll(surface 9) was scratched with thelateral-fast scratching
motion.

magnitude-deviation vectorDi. It should be noted that this
is just one way to process the raw accelerometer data (for a
review of alternative approaches, see [31]).

While the spectrogram contained a lot of useful information,
its dimensionality was fairly high, thereby making it difficult to
use with standard machine learning algorithms. To overcome
this, a smaller set of spectrotemporal features were extracted
using a 2-D spectrotemporal histogram – time (i.e., horizontal
axis of the spectrogram) was discretized intokt bins, while
the frequencies (i.e., vertical axis of the spectrogram) were
further discretized intokf bins. In this paper,kt was set to
5 andkf was set to 25. Thus, each vibrotactile reading was
ultimately represented by a feature vectorXi ∈ R

5×25. Fig.
5 shows the feature-extraction routine, which starts with the
accelerometer readingsAi and ends with the spectrotemporal
histogram featuresXi.

B. Surface-Recognition Methodology

The primary task of the robot was to recognize the correct
surface textures ∈ S given spectrotemporal featuresXi

extracted from vibrotactile feedback. To do this, for each
behaviorb ∈ B, the robot learned a recognition modelMb

that estimated the surface class, given spectrotemporal features
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extracted after performing behaviorb on the test surface.
More specifically, given featuresXi extracted after performing
behaviorb on a test surfaceSi, the modelMb estimated the
probability Prb(Si = s|Xi) for all surfacess ∈ S.

Two different machine learning algorithms were evaluated
as implementations of the modelsMb. The firstk-NN, which
is a memory-based algorithm, and which does not build an
explicit model of the data [32], [33]. Instead, given a test data
point, k-NN finds thek closest neighbors in its training set and
outputs a prediction, which is a smoothed average over those
neighbors. In this study, the parameterk was set to 3. Class-
label probabilities for each surfaces ∈ S were computed by
counting the labels of thek neighbors. For example, if two of
the three neighbors had class labelA thenPr(Si = A) = 2/3.
Similarly, if the class label of the remaining neighbor wasB,
thenPr(Si = B) = 1/3. The k-NN implementation included
in the WEKA machine learning library [34] was used to obtain
the results.

The second algorithm that we evaluated was an SVM clas-
sifier, which is a supervised learning model that falls into the
family of discriminativemodels [35]. Given a labeled training
set, the SVM algorithm learns a linear decision function that
can accurately discriminate between inputs with differentclass
labels. For many problems, however, a good linear separation
may not exist in the input space. To resolve this, the labeled
inputs can be mapped into a (possibly) higher-dimensional
feature space, e.g.,Xi → Φ(Xi), where a good linear decision
function can be found. This mapping can be defined implicitly
using a kernel function, which specifies how similar two
inputs Xi and Xj are. In this case, the output of the kernel
function K(Xi,Xj) replaces the dot productXi

T
Xj in the

dual-quadratic optimization problem solved by the SVM (for
details, see [35] and [36]). In this study, the polynomial kernel
function with exponent 2 was used to estimate the similarity
between a pair of inputsXi andXj

K(Xi,Xj) = (Xi
T
Xj + 1)2

This kernel function was chosen because it is the most
commonly used one in the literature. Other kernel functions
(e.g., RBF kernel) available in the WEKA library were also
explored, but generally resulted in lower performance. The
pairwise-coupling method of Hastie and Tibshirani [37] was
applied to generalize the original binary classification SVM
algorithm to the multiclass problem of surface recognition.
Logistic regression models were fitted to the outputs of the
SVM, as described in [34], in order to obtain a probabilistic
estimatePrb(Si = s|Xi) for the surface type of a test data
point.

C. Combining Predictions from Different Behaviors

So far, we have described how the robot can learn a surface
recognition modelMb for each behaviorb ∈ B. The robot
also needs to be able to efficiently combine predictions from
all five models after performing its set of exploratory behaviors
on a given surface. To do this, during the training stage, each
modelMb performed its own cross-validation on its training
data, and computed a reliability measurewb, corresponding to

the model’s estimated accuracy. This procedure allowed the
robot to estimate the efficacy of each behavior for solving the
surface recognition task.

Next, let X1,X2, . . . ,XN be spectrotemporal features ex-
tracted after performing behaviorsb1, b2, . . . , bN , respectively,
on the test surfaceStest ∈ S. Given these data, the robot
assigned the prediction to the surfaces that maximized:

N
∑

i=1

wbi
Prbi

(Stest = s|Xi)

In other words, given one or more interactions with the
same surface, the robot combined the predictions from dif-
ferent behavioral models using estimates for the reliability of
each channel of information. The weighted combination of
predictions ensures that a model that is not useful for surface
recognition will not dominate over other more reliable models.

D. Surface Categorization

In addition to surface recognition, the robot was also tasked
with learning surface categories. The method consisted of two
steps: 1) estimate a measure of similarity for each pair of
surfaces using the surface recognition models and 2) appli-
cation of unsupervised hierarchical clustering on the surface
similarity matrix to construct surface categories.

The intuition behind this approach is that if two or more
surfaces are not distinguishable by the robot, then they should
be considered similar and placed in the same surface category.
To get a measure of similarity for each pair of surfaces, the
robot performedsurface-basedcross-validation, i.e., during
each iteration, the robot’s models were trained on data from
|S| − 1 surfaces and tested on the remaining one. Since the
test surface was not present in the training set, this procedure
forced a recognition error, but it also showed which of the
|S| − 1 training surfaces was most similar to the test surface.
Let C be the resulting|S| × |S| confusion matrix such that
each entryCij specifies how often surfacei was misclassified
as surfacej. Thus, each valueCij is an integer in the range
of 0-50, since two surfaces can be confused at most 50 times
with five behaviors and ten trials per surface. Because most
clustering algorithms require the input similarity matrixto be
symmetric, another|S| × |S| matrix, i.e.,C′, was computed
such that each entryC ′

ij = 0.5 × Cij + 0.5 × Cji. Finally,
the values inC′ were linearly scaled so that each entry was
between0.0 and 1.0, by dividing each valueC ′

ij by 50.
As required by the clustering algorithm that was used, the
diagonal values of the matrix were set to1.0. The result of
this procedure was a symmetric similarity matrixW, which
was used as input to the unsupervised clustering algorithm.

To construct a surface categorization, the robot used the
spectral clusteringalgorithm, which falls into the family of
graph-basedor similarity-basedclustering algorithms [38].
Given a similarity matrix, i.e.,W, the algorithm partitions
the set of surfaces into disjoint clusters by exploiting the
eigenstructure of the matrixW. Because finding an optimal
graph partitioning is NP-complete, Shi and Malik [39] pro-
posed an approximation that optimizes thenormalized cut
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TABLE II
SURFACE-RECOGNITION ACCURACY FROM A SINGLE BEHAVIOR

Behavior k-Nearest Neighbor Support Vector Machine

lateral-fast 59.5% 64.8%
lateral-medium 52.4% 65.7%

lateral-slow 46.7% 58.6%
medial-fast 43.8% 56.7%

medial-medium 39.5% 45.7%

Average 48.4% 58.3%

objective function. The algorithm, can be summarized with
the following steps.

1) Let Wn×n be the symmetric matrix containing the
similarity score for each pair of surfaces.

2) Let Dn×n be the degree matrix ofW, i.e., a diagonal
matrix such thatDii =

∑

j Wij .
3) Solve the eigenvalue system(D − W)x = λDx for

the eigenvector corresponding to the second smallest
eigenvalue and use it to bipartition the graph.

4) If necessary, recursively bipartition each subgraph ob-
tained in Step 3.

The algorithm recursively bipartitions the graph induced by
the similarity matrixW until a stopping criterion is reached,
thereby producing a hierarchical clustering. The code for
the spectral clustering algorithm used in our experiments is
listed on the WEKA machine learning repository website (see
http://www.cs.waikato.ac.nz/ml/weka/indexrelated.html). The
algorithm is recursively applied until the size of each subgraph
falls below five nodes or until the spectral clustering algorithm
fails to find a bipartition with a high score according to the
normalized cut objective function. The output of this procedure
is a hierarchical taxonomy (i.e., a tree),T , which specifies the
learned surface categorization.

V. RESULTS

A. Surface Recognition from a Single Behavior

The first experiment evaluated the two machine learning
algorithms (k-NN and SVM) on the task of surface recognition
from a single behavioral interaction. The results are reported
in terms of recognition accuracy

% Accuracy =
# correct predictions

# total predictions
× 100

The accuracies of the modelsMb were estimated using
ten-fold cross validation (i.e., the full dataset was splitinto
ten folds and at each evaluation, nine of those were used for
training and one was used for testing).

Table II shows the surface recognition rates for each of the
two classification algorithms and for each of the five behaviors.
For comparison, given that|S| = 21, a chance classifier
is expected to achieve1/|S| = 4.76% surface-recognition
accuracy. The robot was able to achieve recognition rates sub-
stantially better than chance with all five exploratory behav-
iors. For both lateral and medial scratching behaviors, faster
scratching resulted in better model performance. On average
across all five behaviors, the SVM algorithm outperformed the

1 2 3 4 5
40

45

50

55

60

65

70

75

80

85

Number of Behaviors Performed on Test Surface

%
 S

ur
fa

ce
 R

ec
og

ni
tio

n 
A

cc
ur

ac
y

 

 

k−Nearest Neighbor
Support Vector Machine

Fig. 6. Surface recognition performance as a function of the number of
different exploratory behaviors performed on the test surface. The predictions
of the behavior-specific models are combined using a linear weighted combi-
nation as described in Section IV-C.

k-NN algorithm by roughly10%. Yet, there is still significant
room for improvement.

B. Surface Recognition from Multiple Interactions

The next experiment investigated whether the robot can
improve its surface recognition rate by performing multiple
behaviors on the test surface and then combining the resulting
predictions. For example, the robot should be able to recognize
a surface with a higher accuracy rate if it performs a sequence
of two different behaviors (e.g., fast, followed by medium
lateral scratch) than with either behavior alone.

To test this hypothesis, the number of behaviors that the
robot performed on a surface at test time was varied from
1 (the default, which is used to generate Table II) to 5 (i.e.,
performing all five exploratory behaviors on the test surface).
When performing two, three and four interactions with the test
surface, all possible combinations of behaviors were evaluated
and the average recognition rate was recorded. Whenever
the robot was performing two or more exploratory behaviors
on the test surface, the predictions from the corresponding
recognition models were combined, as described in Section
IV.C.

Fig. 6 shows the recognition rates for this experiment with
the k-NN and SVM learning algorithms. As more behaviors
are performed on the test surface, the recognition rate increases
dramatically. Using SVM, the recognition rate increases to
80.0% after performing all five exploratory behaviors. This
apparent boost of the recognition rate is consistent with previ-
ous results on interactive object recognition tasks, whichalso
show that applying multiple behaviors can greatly improve
object recognition accuracy [40], [41], [42]. Therefore, robots
can achieve higher tactile recognition rates if they can perform
different types of scratching behaviors, as opposed to justone.

An additional experiment was performed to test if the same
type of recognition boost can be obtained by combining two
instances of thesame scratching behavior instead of two
differentscratching behaviors, which are all performed on the
same surface. To do this, the dataset was split into five folds,
each containing two trials with all five behaviors per surface.
During each round of evaluation, the model was trained on
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Fig. 7. Comparison of the improvement in classification accuracy when
combining feedback from two executions of thesamebehavior versus two
executions ofdifferent behaviors. Regardless of the learning algorithm (i.e.,
k-NN or SVM), the classification improvement is higher when combining
feedback from two distinct scratching behaviors.

four of these folds (i.e., eight trials) and tested on the test fold
(i.e., two trials). Next, the model’s outputs were computedfor
all five possible combinations of the same behavior, as well
as for all

(

10

2

)

− 5 = 40 possible combinations of different
behaviors present in the test set. These outputs were compared
with the true labels and used to estimate the improvement in
recognition accuracy, as described below.

Let acc(Bi, Bj) be the expected recognition accuracy when
combining feedback from behaviorsBi and Bj , and let
acc(Bi) and acc(Bj) be their individual accuracies. The
recognition improvement (i.e.,RIij) obtained when using
any two behaviorsBi and Bj (which could be the same
or different) can be measured relative to the classification
performance of the individual behaviors, i.e.,

RIij = acc(Bi, Bj) −
acc(Bi) + acc(Bj)

2

This formulation allows us to test if combining feedback
from two different behaviors results in greater recognition
boost than combining feedback from two executions of the
same behavior. The results of this evaluation are shown in Fig.
7. The average recognition improvement when using the same
behavior was estimated from five samples, i.e., one for each of
the five scratching behaviors. The improvement attained when
combining two different behaviors was estimated from ten
samples, i.e., one for each unique pair of behaviors. For both
learning algorithms, the classification improvement is higher
when two different behaviors are applied on the test surface,
as opposed to applying the same behavior twice.

C. Recognition Errors

It is also worth investigating the type of recognition errors
that the robot makes. Fig. 8 shows the confusion matrix
obtained when using the SVM learning algorithm and applying
all five behaviors on the test surface. The confusion matrix
indicates how often a given surface was misclassified as an-
other surface (perfect classification would result in a diagonal
matrix). In this case, the overall accuracy is80.0%. The matrix
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Fig. 8. Confusion matrix obtained after evaluating the robot’s recognition
model when all five exploratory behaviors were applied on the test surface.
The matrix specifies how often a surface was classified correctly (i.e., diagonal
entries) or mis-classified as another surface (i.e., off diagonal entries). Dark
colors indicate high values, while light colors indicate low values.

shows that most errors involve pairs of surfaces with similar
textures.

For example, thewhite paper (i.e., surface 17) and the
yellow paper(i.e., surface 18) are often confused with each
other. This is to be expected, however, as the two papers are
almost identical. Similarly, thesoft cloth(i.e., surface 3) and
the cotton wool cloth(i.e., surface 15) are also confused with
each other. Surfaces that are unique within the dataset (e.g.,
surface 9, theplastic kitchen roll) are generally recognized
with higher accuracy. The results also show that thetable
surface (i.e., surface 10) is often confused with the two types
of paper, as well as thebed sheet(i.e., surface 11). This is
likely due to the fact that those surfaces are rather thin, and
thus, some of the detected tactile feedback is due to the table
surface on which they were placed.

Overall, the confusion matrix shows that the errors of the
robot’s recognition models are not random in nature. Instead,
whenever an error is made, the predicted surface is often
somewhat similar to the actual one, in terms of material and/or
texture. This suggests that the recognition models could be
used to estimate a measure of similarity between surfaces
based on vibrotactile data.

D. Surface Categorization

In the next experiment, the robot used its surface-recognition
models to learn surface categories. LetW be the resulting
object similarity matrix after performing cross-validation as
described in Section IV-D. The similarity matrix can be visu-
alized in two dimensions by converting it into a distance matrix
and embedding it onto the 2-D plane using the ISOMAP
method for non-linear dimensionality reduction [43].
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Fig. 9. Two-dimensional embedding of the pair-wise surface-similarity matrix
used for surface categorization. The two axes correspond tothe first two
dimensions in the lower dimensional embedding computed by the ISOMAP
algorithm, and thus, do not have physical units. Surfaces with high similarity
in W appear close to each other in the graph. The glyph (color and shape)
for each surface corresponds to the category of the surface according to a
particular cut through the learned surface hierarchy (cut 2 in Fig. 10).

The 2-D embedding of the similarity matrix is shown
in Fig. 9. The closeness between surfaces in the ISOMAP
embedding corresponds to their similarity inW, i.e., surfaces
with high similarity appear close to each other in the graph.
Like the confusion matrix (see Fig. 8), the embedding shows
which surfaces are considered to be similar from the point of
view of the robot’s recognition models.

To construct surface categories, spectral clustering was
applied on the similarity matrixW, as described in Section IV-
D. The resulting hierarchical surface categorization is shown in
Fig. 10. Three cuts through the hierarchy are also shown:cut 1,
which corresponds to the initial top-level split;cut 2, which
was produced by further splitting the two top-level clusters;
andcut 3, which corresponds to the leaf cut of the hierarchy.
It is important to note that the robot’s experience with the set
of surfaces was still quite limited, and thus, it is unrealistic to
expect that the learned surface categorization would perfectly
match a categorization provided by a human.

Upon closer examination, however, most leaf clusters in the
learned hierarchy tend to consist of highly similar surfaces.
For example, the first leaf category contains thesoft cloth
and thesoft wool cloth, as well as the21st surface in the
dataset (scratching in mid air). Both leathers (i.e., surfaces 4
and 8) are placed in the second cluster, along with thebulletin
board (i.e., surface 6). The third leaf cluster contains surfaces
that are highly similar to the bare table (i.e., surface 10).For
example, the two papers (i.e., 17 and 18) contained in that
same cluster are so thin that the detected tactile feedback is
largely influenced by the table on which they are laid. Both
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Fig. 10. The learned hierarchical surface categorization.Three possible cuts
through the hierarchy are shown:Cut 1, corresponds to the top-level split
into two categories;cut 2 is produced by further splitting the two top-level
clusters;cut 3 corresponds to the leaf cut of the hierarchy.

the front side of the thinner doormat (i.e., surface 5) and its
backside (i.e., surface 13) end up in the same cluster. On the
other hand, the front and back sides of the corduroy (i.e.,
surfaces 7 and 12) end up in two different leaf clusters, which
share the same parent cluster.

E. Surface-Category Recognition

The robot was also evaluated on how well it can recognize
the correct category of anovelsurface (i.e., a surface that was
not present in the training set). Given a hierarchical surface
categorization and a chosen cut through the hierarchy, SVM
models were trained that could accurately label data from a
novel surface with the correct surface category. For example,
given the hierarchy shown in Fig. 10 and cut 1, the robot’s
task was to label a novel surface as belonging to either one
of the top two high-level categories. Once the prediction was
made, it was compared with the actual category of the novel
surface (i.e., the category to which the surface would have been
assigned if the robot had performed all five behaviors ten times
on this surface before estimating the surface categorization).

Category-recognition rates were estimated usingsurface-
basedcross-validation: At each iteration, data from|S| − 1
surfaces were used for training the model, while data from the
remaining one surface was used for testing. The hierarchical
categorization itself remained fixed in order to compare the
predicted surface category to the actual one (i.e., the one
shown in Fig. 10). In other words, the elements in the surface
similarity matrix W corresponding to the novel surface were
only used when evaluating the outputs of the recognition
model and not when training it.

The results of this experiment are shown in Fig. 11. Overall,
the robot was able to recognize the category of a novel surface
with accuracy substantially better than chance. Performance
was best with more abstract or high-level surface categories
(e.g., cut 1) and worst with the lowest level cut (i.e., the
leaf cut). As expected, the accuracy rates forcut 3 are worse
than the surface recognition rates (see Fig. 6), since in the
category-recognition experiment, the robot is evaluated on
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Fig. 11. Surface-category-recognition rates using SVM forthree different
cuts through the learned hierarchy. In this experiment, the robot was tasked
with recognizing the correct category of a novel surface (i.e., one that was
not available in the training set).

novel surfaces, as opposed to familiar ones. Nevertheless,the
recognition performance for all three cuts improved as more
exploratory behaviors were performed on the test surface.

To summarize, the results from the surface categorization
experiment in Section V-D showed that the robot was able to
learn surface-recognition models and use them to construct
a hierarchical surface categorization. The results from this
section show that the robot was also able to learn SVM models
that can label a novel surface with its correct surface category.
Overall, the learned hierarchical clustering of the surfaces
captures some of their physical properties and, generally,tends
to group similar surfaces into the same cluster of the hierarchy.

VI. CONCLUSION

This paper presented a method and a representation for
surface recognition and surface categorization using a three-
axis fingertip accelerometer. The sensor was mounted on one
of the fingers of our humanoid robot and was able to capture
the vibrations characteristic of a given surface as the robot
scratched it. Our robot was programmed with five different
exploratory scratching behaviors, which it used to explore20
different surfaces that were made of various materials (e.g.,
cloth, wood, paper, leather, etc.). Using frequency-domain
analysis and spectrotemporal features, the robot was able
to recognize the surfaces with80.0% accuracy. Applying
multiple different types of scratching behaviors on a test
surface resulted in higher recognition rates than with any
single behavior alone.

The robot’s recognition model was also used to estimate
a hierarchical surface categorization, which groups similar
surfaces together. Learning abstract, but meaningful, categories
of surfaces (or more generally, objects) is a prerequisite for
an intelligent robot expected to handle the hundreds of objects
present in our homes and offices. A hierarchical representation
of surface types can potentially allow a robot to character-
ize and recognize an even larger number of surfaces. The
hierarchical representation can also be used by the robot to
characterize a novel surface (i.e., one that is not available in

the training set) by associating it with the most-similar cluster
of surfaces in the learned hierarchy.

One of the major findings of this study is that the use of
multiple exploratory behaviors can be crucial for improving
the robot’s recognition rate. Performing the same behavior
twice also improved the accuracy, but the improvement was
larger when two different behaviors were used. Given the large
potential space of scratching trajectories, a potentiallyfruitful
direction for future work may involve automated learning of
useful behaviors and exploratory procedures by a robot for
the task of characterizing and recognizing surfaces. Such an
ability is important, especially considering that the optimal set
of behaviors depends on the surfaces explored by the robot
and, thus, cannot be preprogrammed in advance. In addition
to learning optimal behaviors, it would also be desirable to
implement bi-manual scratching behaviors (e.g., hold an object
with one hand and scratch it with the other) in order to scale
up the existing method to a wider variety of household objects.

Integrating other modalities (e.g., audio, vision, and proprio-
ception) into the framework is also a viable direction for future
work. Audio, in particular, would allow the robot to perceive
surface properties by performing exploratory behaviors such as
tapping on the surface and listening for feedback. Some of our
research results already indicate that integrating vibrotactile
feedback with proprioception (in the form of joint-torque
values over the course of the interaction) results in even higher
surface-recognition rates than the ones obtained when using
either sensory modality alone [42].

While the number of surfaces used in this study was
larger than those used in previous related work on tactile
recognition, it still pales in comparison to the hundreds of
different types of surfaces present in our homes and offices.
A hierarchical surface categorization is one possible way to
handle such a large number of entities. In future work, the
robot can be evaluated on learning compact surface and object
hierarchies with emphasis on integration of novel entitiesinto
the learned categorization. Robots that can learn about large
sets of objects and their relationships will undoubtedly be
better suited to handle the multiple challenges of human-
inhabited environments.
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