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Summary
This study investigates the use of a vibrotactile
sense for surface texture recognition by a hu-
manoid robot. The sensor is an artificial fin-
gernail with an attached 3-axis accelerometer,
which the robot uses to scratch different sur-
faces. Our method combines frequency-domain
analysis of the acceleration measurements with
the Support Vector Machine (SVM) learning al-
gorithm to recognize surfaces.

Motivation I
Vibrotactile Modality in Humans
There is evidence that humans use two dif-
ferent sensory modalities to represent surface
roughness: a tactile modality for coarse surfaces
and a vibrotactile modality for finer surfaces.1

tactile modality vibrotactile modality
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perceives cutaneous
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Source of the SA1 cell picture: Wolf K., Goldsmith L.A., Katz S.I.

Gilchrest B.A. Paller A.S. Leffel D.J. Fitzpatrick’s Dermatology in

General Medicine. 7th Edition. McGraw-Hill Professional, 1997.

Motivation II
Exploratory Behaviors
• Motion is required to produce the vibrations.
• Humans use exploratory behaviors to recog-
nize objects from tactile interactions.2

“the hand and the brain is an intelligent device in that it
uses motor capabilities to greatly enhance its sensory func-
tions”.2

“purposive hand movements appear critical for haptically
experiencing the world outside ourselves”.2

The list of exploratory behaviors observed in humans during the process of tactile object

recognition.2

Exploratory behaviors applied to surfaces were
observed in human infants as young as 6
months old.3

Related Work
• Kuchenbecker4 proposed using accelerome-
ters, strain gauges and other types of contact
sensors to record tactile sensations with the idea
of reproducing them later.
• Howe and Cutkosky5 suggested detecting
slip from the readings of a 3-axial accelerome-
ter.
• Hosoda et al.6 used a robotic finger to apply
two exploratory behaviors to objects. The finger
contained polyvinylidene fluoride (PVDF) films
and strain gauges sensors.
• de Boissieu et al.7 used three-axial force sen-
sors embedded in an artificial finger that was
mounted on a plotter to discriminate between
10 different types of paper.

Experimental Setup
The Humanoid Robot.
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The accelerometer data was recorded at 400 Hz. With each
surface the robot performed 10 trials. Each trial consisted
of 5 scratches (3 lateral and 2 medial) executed at different

velocities. Thus, the total number of behavioral interactions
performed by the robot was 21× 10× 5 = 1050.

The Sensor.

Left: the plastic fingernail with the attached accelerometer.
Right: the other side of the accelerometer board (the

ADXL345 is in the center).

Surfaces
1: thick floor mat 2: thin blue mat 3: soft cloth 4: leather with bumps 5: thin floor mat

6: bulletin board 7: corduroy 8: flat leather 9: plastic kitchen roll 10: table

11: bed sheet 12: back of 7 13: back of 5 14: cloth with sparkles 15: cotton wool (back of 8)

16: pattern (back of 4) 17: white paper 18: yellow paper 19: bubble wrap (back) 20: wood

Surface 21 is the control condition corresponding to the
robot scratching in mid-air.

Learning Methodology
Feature Extraction

3-axis accelerometer data
⇓

magnitude deviation vector

⇓

spectrogram

⇒

histogram

Recognition (SVM)

• Given raw accelerometer readings in vectors X , Y , Z,

• compute the magnitude vector Mi =
q

X2
i + Y 2

i + Z2
i ,

• compute the smoothing acceleration vector S from M using run-

ning averages over a window of size 100,

• compute the magnitude deviation vector D = M − S,

• apply DFT with a window of size 100 to D,

• from the spectrogram, compute the 25× 5 histogram,

• use the histogram as a feature vector by SVM with polynomial

kernel of exponent 2 to perform the recognition.

Recognition Results
• 10-fold cross-validation.
• Faster scratches usually resulted in better ac-
curacy than slower one’s.
• For each scratch the recognition accuracy was
significantly better than random (chance accu-
racy is 1/21 ≈ 4.76%).

Accuracy for Single
Behaviors

Scratch Type Accuracy
Lateral (fast) 64.8%
Lateral (med.) 65.7%
Lateral (slow) 58.6%
Medial (fast) 56.7%
Medial (slow) 45.7%
Average 58.3%

Combining Behaviors

Number of scratch behaviors
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The Isomap is a 2D embedding of the distance metric computed

from the confusion matrix. Groups of similar surfaces that were con-

fused often:

• the thin surfaces – the two paper surfaces (17 and 18), the bed sheet

(11) and the table (10).

• the softest surfaces – cloth (3), wool (15) and air (21).

Conclusions and Future Work
• We evaluated the effectiveness of a robotic vi-
brotactile sense for surface recognition tasks.
• By combining data from two or more behav-
iors the robot was able to achieve higher recog-
nition accuracy than for any single behavior
alone.
• When the robot used all five exploratory be-
haviors the accuracy reached 80%.
Analysis of the confusion metric for different
surfaces indicates that in many cases the sur-
faces that are most similar to each other (e.g.
the two papers) are often confused by the robot.
This fact suggests that a robot could build a
meaningful surface categorization from vibro-
tactile data.
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