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Summary

This study investigates the use of a vibrotactile
sense for surface texture recognition by a hu-
manoid robot. The sensor is an artificial fin-
gernail with an attached 3-axis accelerometer,
which the robot uses to scratch different sur-
faces. Our method combines frequency-domain
analysis of the acceleration measurements with
the Support Vector Machine (SVM) learning al-
gorithm to recognize surfaces.

Motivation |

Vibrotactile Modality in Humans

There is evidence that humans use two dif-
ferent sensory modalities to represent surface
roughness: a tactile modality for coarse surtaces

and a vibrotactile modality for finer surfaces.!
tactile modality vibrotactile modality
perceives spatial varia-
tions primarily via SAl
mechanoreceptors.
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percelves cutaneous
vibrations primarily via
Pacinian afferents.
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Source of the SA1 cell picture: Wolf K., Goldsmith L.A., Katz S.I.
Gilchrest B.A. Paller A.S. Letffel D.]J. Fitzpatrick’s Dermatology in
General Medicine. 7 Edition. McGraw-Hill Professional, 1997.

Motivation ||

Exploratory Behaviors

* Motion is required to produce the vibrations.
* Humans use exploratory behaviors to recog-
nize objects from tactile interactions.?

“the hand and the brain is an intelligent device in that it
uses motor capabilities to greatly enhance its sensory func-
tions” .2

“purposive hand movements appear critical for haptically

experiencing the world outside ourselves”.?
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The list of exploratory behaviors observed in humans during the process of tactile object

recognition.2

Exploratory behaviors applied to surfaces were
observed in human infants as young as 6
months old.’

Related Work

e Kuchenbecker* proposed using accelerome-
ters, strain gauges and other types of contact
sensors to record tactile sensations with the idea
of reproducing them later.

e Howe and Cutkosky’® suggested detecting
slip from the readings of a 3-axial accelerome-
ter.

e Hosoda et al.® used a robotic finger to apply
two exploratory behaviors to objects. The finger
contained polyvinylidene fluoride (PVDF) films
and strain gauges sensors.

e de Boissieu et al.” used three-axial force sen-
sors embedded in an artificial finger that was
mounted on a plotter to discriminate between
10 ditferent types of paper.

Experimental Setup
The Humanoid Robot.

plastic fingernail and a 3-axis accelerometer
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The accelerometer data was recorded at 400 Hz. With each
surface the robot performed 10 trials. Each trial consisted
of 5 scratches (3 lateral and 2 medial) executed at different
velocities. Thus, the total number of behavioral interactions
performed by the robot was 21 x 10 x 5 = 1050.
_The Sensor.

Left the plastic fingernail with the attached accelerometer.
Right: the other side of the accelerometer board (the

ADXL345 is in the center).
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7: corduroy 8: flat leather 9: plastic kitchen roll

11: bed sheet 12: back of 7 13: back of 5 | 14: cloth with sparkles | | 15: cotton wool (back of 8)

16: pattern (back of 4) 17: white paper 18: yellow paper 19: bubble wrap (back)

Surface 21 is the control condition corresponding to the

robot scratching in mid-air.

Learning Methodology

Recognition (SVM)

Feature Extraction
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3-axis accelerometer data
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e Given raw accelerometer readings in vectors X, Y, Z,

e compute the magnitude vector M; = \/ XZ24+Y?2+ Z2,

e compute the smoothing acceleration vector S from M using run-
ning averages over a window of size 100,

e compute the magnitude deviation vector D = M — S,

e apply DFT with a window of size 100 to D,

* from the spectrogram, compute the 25 X 5 histogram,

e use the histogram as a feature vector by SVM with polynomial

kernel of exponent 2 to perform the recognition.

Recognition Results

e 10-fold cross-validation.
e Faster scratches usually resulted in better ac-
curacy than slower one’s.
* For each scratch the recognition accuracy was
significantly better than random (chance accu-

racy is 1/21 =~ 4.76%).
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The Isomap is a 2D embedding of the distance metric computed
from the confusion matrix. Groups of similar surfaces that were con-
fused often:

e the thin surfaces — the two paper surfaces (17 and 18), the bed sheet
(11) and the table (10).

e the softest surfaces — cloth (3), wool (15) and air (21).

Conclusions and Future Work

* We evaluated the effectiveness of a robotic vi-
brotactile sense for surface recognition tasks.

* By combining data from two or more behav-
iors the robot was able to achieve higher recog-
nition accuracy than for any single behavior
alone.

e When the robot used all five exploratory be-
haviors the accuracy reached 80%.

Analysis of the confusion metric for different
surfaces indicates that in many cases the sur-
faces that are most similar to each other (e.g.
the two papers) are often confused by the robot.
This fact suggests that a robot could build a
meaningful surface categorization from vibro-
tactile data.
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